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Abstract 
 
The efficacy of an ocean observing, analysis, and forecasting system for the Mid-Atlantic Bight 
and the Gulf of Maine is explored using the concept of array modes. The analysis-forecast 
system is based on a triply nested configuration of the Regional Ocean Modeling System 
(ROMS) in conjunction with 4-dimensional variational (4D-Var) data assimilation. The array 
modes identify the degrees of freedom (df) of the signal and of the noise resolved by the 
observations, and are used here to quantify the extent to which the existing network of platforms 
and instruments are able to observe the ocean across different dynamical regimes ranging from 
quasi-geostrophic through the mesoscale and down to the sub-mesoscale. The ocean observing 
system includes the U.S. National Science Foundation’s Ocean Observatories Initiative Pioneer 
Array. In general, it is found that the df of the signal are largely associated with in situ 
observations from the Pioneer Array. On the other hand, a combination of satellite remote 
sensing and in situ observations potentially contribute to the df of the noise associated with 
uncertainties in the measurements. The array modes also provide information about the reduction 
in the expected analysis and forecast error covariance due to assimilating the observations. Here 
too observations from the Pioneer Array are found to significantly influence the veracity of the 
analyses and forecasts, and the circulation is instrumental in propagating observational 
information to other parts of the model domain. An approach is presented in which the array 
modes are used to quantify the impact of data assimilation on the expected forecast error 
covariance of forecasts initialized from the 4D-Var ocean state estimates. The advantage of this 
approach over others in common use is that it is independent of forecast error norm and 
circumvents the need for generating potentially large and costly ensembles. 
 
 
 
 
 
Keywords: Array modes; data assimilation; 4D-Var; Mid-Atlantic Bight; Pioneer Array; forecast 
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1 Introduction 
 
Regional ocean analysis and forecasting are now well-established activities of many national 
agencies, operational centers, and research groups worldwide. A critical component of such 
systems is data assimilation, which aims to combine ocean observations with a model to yield an  
estimate of the ocean state that is more reliable than either the observations or model alone. 
Since the practice of data assimilation is deeply rooted in estimation theory, it also provides an 
opportunity to assess the properties of the observing system itself. In this study, we explore the 
array modes of the ocean observing system in the Mid-Atlantic Bight (MAB) and Gulf of Maine 
(GoM) in the NE Atlantic. This observing system supports the U.S. Integrated Ocean Observing 
System (IOOS) and forms the backbone of the Mid-Atlantic Regional Association Coastal Ocean 
Observing System (MARACOOS). The MAB is also unique in that it is home to the U.S. 
National Science Foundation (NSF) Ocean Observatories Initiative (OOI) Pioneer Array. The 
Pioneer Array has been operational since April 2014 and comprises fixed moorings and a fleet of 
autonomous underwater vehicles that are deployed at the continental shelf-break. The primary 
aim of the Pioneer Array is to increase understanding of the processes responsible for the 
transport of water masses across the shelf-break, and their relationship to atmospheric forcing on 
a range of time scales (Gawarkiewicz et al., 2018). 
 
This paper is an extension of the recent studies by Levin et al. (2019, 2020, 2021), which 
document a detailed assessment of the impact of the MAB and GoM observing system on data 
assimilation estimates of the ocean environment and shelf-break exchange processes in the 
vicinity of the Pioneer Array. Here, the array modes of the observing system have been used to 
delve deeper into the degree to which the information provided by the observations constrain our 
knowledge of the ocean state. The array modes are analogous to the characteristic modes 
employed in electrical engineering and antenna design. Array modes were first introduced in 
oceanography by Bennett (1985) and provide information about the field-of-view and degrees of 
freedom (df) of an observing system, as well as limitations that are endemic to the data 
assimilation system. More recent applications of array modes in ocean data assimilation include 
Egbert et al. (1994), Bennett (2002), Kurapov et al. (2009), and Kurapov and Özkan-Haller 
(2013), while modified forms of the array mode concept have been employed by Le Hénaff et al. 
(2009), Lamouroux et al. (2016) and Moore et al. (2018). 
 
This study draws on the properties of, and information provided by, the array modes as a means 
of quantifying the efficacy of an ocean analysis-forecast system. Given their central importance, 
the concept of array modes is reviewed in section 2 in relation to 4-dimensional variational (4D-
Var) data assimilation, the approach employed in this work. The concept of Reduced-rank Array 
Modes (RAMs) is a practical variant of the array mode concept and is also introduced in section 
2. The model used in this study is the Regional Ocean Modeling System (ROMS) configured for 
the MAB and GoM in conjunction with 4D-Var as described in section 3. The model comprises a 
triply nested configuration of ROMS that resolves circulation scales ranging from quasi-
geostrophic down to the sub-mesoscale. The 4D-Var analyses at each scale are informed by 
observations that lead to a reduction in the expected error covariance of the resulting ocean state 
estimates. As we will demonstrate, the reduction in error covariance can be quantified by 
drawing on the known properties of the RAMs. As a prelude, the hallmark fingerprints of the 
RAMs of the MAB and GoM ocean state estimates across the range of scales captured by the 
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model are first explored in section 4. Section 5 focusses on several aspects of impact of the 
observations assimilated into the model on the 4D-Var analyses and ensuing ocean forecasts. 
First, section 5.1 describes an alternative and cost-effective RAM-based approach for computing 
the expected reduction in the analysis and forecast error covariance. The spatio-temporal nature 
of the expected error variance reduction in explored in section 5.2. In section 5.3 we demonstrate 
that much of the expected reduction in error covariance is associated with a single RAM. 
Furthermore, the contribution of each observation to the amplitude of this RAM is shown to be a 
useful and alternative measure of the observation impacts. The advantage of this approach over 
the more conventional adjoint-based (e.g. Langland and Baker, 2004) or ensemble-based 
approaches (e.g. Liu and Kalnay, 2008) is that it is independent of forecast error norm, and 
generally more cost-effective. Many of the ideas and results presented here are predicated on 
identification of the RAMs as the dfs of the observing system. This information is utilized in 
section 6 to identify the extent to which the 4D-Var analyses may be overly constrained by errors 
and uncertainties in the observations. A summary, conclusions, and discussion of potential 
applications of our work is presented in section 7. 
 
2 Array Modes 
 
The theory of array modes will be summarized here in terms of 4-dimensional variational (4D-
Var) data assimilation, although, in principle, the same ideas can be applied to other linear data 
assimilation methodologies. With this in mind, we will follow standard notation and denote by � 
the ocean state-vector comprising all grid-point values of the model prognostic variables. Given 
a prior or background estimate of the state-vector, ��, and the � × 1 vector of ocean 
observations, ��, where � is the number of observations, the best linear unbiased estimate or 
analysis, �	, is given by: 
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�	 = �� + ��� − ������    (1) 123 

 124 

where � is the observation operator that samples �� at the observation locations in space and 
time, and � is the gain matrix. In 4D-Var, � includes the nonlinear model. The gain can be 
expressed as: 
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� = �������� + ����    (2) 129 

 130 

where � and � are the background error and observation error covariance matrices, respectively. 
The matrix � denotes the tangent linearization of � and in 4D-Var represents the tangent linear 
model sampled at the observation points, while ��  denotes the adjoint of these operations.  
 
The matrix � = ����� + �� represents the total error covariance in the space spanned by the 
observations and is often referred to as the stabilized representer matrix. For now, let us suppose 
that all of the observations are of the same type (e.g., in situ temperature observations). In this 
case, and since � is a symmetric matrix, it can be factorized as ����where � = ���� is the 
matrix of orthonormal eigenvectors �  and � = diag�" � are the associated eigenvalues. � �
Following Bennett (1985), the analysis �	 in (1) can be re-expressed as: 
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�	 = �� + ∑&
�'� $�%�     (3) 142 

 143 

where % = ����  are referred to as the array modes with amplitudes $ = "�� ,� � � ��
� � (  and ( =

�� − ������ is the innovation vector. Similar ideas are utilized in antenna theory where it is 
the eigen spectrum of the impedance matrix associated with an antenna that is considered (Chen 
and Wang, 2015). In that case, the array modes (or characteristic modes) are frequency-
dependent. The extent to which a particular mode is excited by an incident electromagnetic field 
with frequency ) is proportional to �"� − )���. Therefore, when the incident waveform 
frequency matches the eigenvalue of a specific array mode, resonance occurs. The array modes 
of an ocean observing system depend on �, �, �, and, in the case of 4D-Var, �� and, while 
dependent on the observation times and locations through H, they are independent of the 
observation values ��. However, the extent to which each array mode is excited is determined by 
the innovations ( and therefore does depend on the data values themselves. In this case, there is 
no frequency dependence of the “incident signal” from the innovations, and the array mode 
amplitudes $  are proportional to � "��. �

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

 157 

The eigenvectors �  represent the Empirical Orthogonal Functions (EOFs) of the total error �
covariance in observation space, and the eigenvalues are the variance associated with each EOF. 
Since the array mode amplitudes $ ∝ "��, the EOFs associated with the largest uncertainty are � �
weighted the least, while the EOFs that account for the least fraction of error variance are 
weighted the most. This, of course, makes intuitive sense since the 4D-Var increments +� =
∑, $ %  then draw most heavily on the array modes associated with the smallest total error �'� � �
variance. The array modes themselves % = ����  represent the projection of the stabilized � �
representer matrix EOFs �  into state-space via the adjoint operation � ��. 
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In general, ocean observing systems comprise observations of several state variables from a 
variety of different platforms. Also, since the number of observations � is large, most 4D-Var 
approaches identify the analysis given by (1) and (2) using iterative methods. Therefore, some 
form of preconditioning of � is essential, and without this, the notion of EOFs does not make 
sense. In ROMS, the R-preconditioned stabilized representer matrix �- = �������� + .� is 
factorized using the Lanczos formulation of the conjugate gradient (CG) algorithm according to: 
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�-/ ≈ 1/2/1�/ ����     (4) 174 

 175 

where 1 = �3 � is the matrix of Lanczos vectors 3 , which represent the normalized CG search / � �
directions, and 2 = 1�  �����-1  is a symmetric, positive definite tridiagonal matrix (Gürol / / /
et al. , 2014). The Lanczos vectors are orthonormal according to 1�  ����1 = .  where the / / /
norm used is a result of additional restricted preconditioning by � (Gratton and Tshimanga, 
2009). The subscript 4 represents the number of CG iterations performed, referred to as inner-

loops. In this case, a set of array modes and amplitude coefficients can be defined according to: 
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%-� = ���1/5�     (5) 183 
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$6� = "��5�
� � 1�/ �������( = "��

� %�
� �����(   (6) 7 7 -185 

 186 



 6

where 8"7 , 5 : are the eigenpairs of 2 . Since �-  in (4) represents a reduced-rank � � / /
approximation of  ����, Moore et al. (2018; hereafter MAE) refer to the %-  as the Reduced-�
rank Array Modes (RAMs) to distinguish them from the full rank case originally considered by 
Bennett (1985). It is also important to note that since (5) and (6) are based on the eigen spectrum 
of the preconditioned matrix ����, the EOFs of �-  must be interpreted as the vectors that /
account for fractions of the rescaled total variance in observation. This is also discussed by Le 
Hénaff et al. (2009), who considered a similar rescaling of �  by ���⁄; and refer to the 
associated EOFs mapped back into state-space as modal representers. In the case considered 
here, there will be only 4 RAMs, and the analysis increment can be expressed as +� =
∑/ $6 %-  �'� � .�
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Despite the differences in definition, several useful complementary interpretations of the array 
modes and RAMs exist. Bennett (1985) notes that the array modes can be viewed as 
interpolation patterns from observation-space to state-space onto which the observations project. 
The dependence of the weights $6  on "7�� dictates that the analysis increments will be most � � +� 
(least) sensitive to uncertainties in the measurement values that project onto array modes 
associated with the smallest (largest) eigenvalues. If the eigenvalues "7  are arranged in �
descending order, then %-  represents the most stable interpolation pattern for the observations �
into state-space. Conversely, we should treat with caution the %-  associated with small �
eigenvalues since these may introduce non-physical noise into the analysis. Viewed another way, 
the eigen spectrum provides information about the degrees of freedom (df) for the signal resolved 
by the observing array, and the df for the noise associated with uncertainties in the observations 
due to measurement errors and errors of representativeness (Rodgers, 2000). Since ������� 
and �- have the same eigenvectors and their eigenvalues differ by 1, the number of eigenvalues 
for which "7 > 2 provides a measure of the effective number of df of the signal that is resolved �
by the observing array. Array modes associated with "7 < 2 will be indistinguishable from errors �
or uncertainties in the observations (i.e. the df of the noise in the data) and should be rejected.1 
These ideas have been applied by Bennett and McIntosh (1984), Le Hénaff et al. (2009), and 
MAE to ocean observing systems and will be revisited in section 6 where a more conservative 
practical criterion is enforced instead of "7 < 2 to prevent overfitting to observation errors. �
Furthermore, since the expected covariance properties of the array mode amplitudes are known a 

priori, identifying the array modes with the df provides a useful framework for quantifying the 
impact of data assimilation on ocean forecasts. These ideas are exploited in section 5. 
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3 Model Configuration 
 
The ROMS configuration employed in this study spans the MAB and the GoM. Three 
telescoping nesting layers were used, and the geographical extent of each nested grid is shown in 
Fig. 1. The model configuration has been described in detail elsewhere (Levin et al., 2019; 2020, 
2021), so only a brief description will be given here. The horizontal resolution of the three grids 
is ~7 km (grid G1), ~2.4 km (grid G2), and ~0.8 km (grid G3), respectively. In all grids, there are 
40 terrain-following levels stretched so that the thickness of the surface-most layers is in the 
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 From the definition of  �  the eigenvalues " ≥ 1 and the lower bound would correspond to the situation where / �

�������is singular. 
- 7
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range 0.1-1.8 m and 0.1-3.4 m near the bottom over the continental shelf. The innermost refined 
grid, G3, is centered on the NSF OOI Pioneer Array. The G1 open boundaries were constrained 
using data from the Mercator-Océan real-time global analyses (Lellouche et al. 2018) that were 
adjusted to remove a seasonal bias by comparing with the local, regional climatology derived by 
Fleming (2016).  
 
Corrections for bias were also made to the G1 open boundary mean dynamic topography and 
seasonal cycle of sea surface height (SSH) using a regional, data assimilative, climatological 
analysis as described by Levin et al. (2018) and Wilkin et al. (2018). Surface fluxes of 
momentum, heat, and freshwater were derived from 3-hourly National Centers for 
Environmental Prediction (NCEP) North American Mesoscale (NAM) fields using the standard 
bulk formulae of Fairall et al. (2003). Application of the NAM atmospheric pressure drives an 
oceanic dynamic inverted barometer response. Daily freshwater discharge from 22 rivers was 
imposed based on gauge observations from the U.S. Geological Survey and Water Survey of 
Canada (Lopez et al. 2020, Wilkin et al. 2018). All three grids can be run using one- or two-way 
nesting, which provides appropriate boundary conditions for G2 and G3. 

229 

230 

231 

232 

233 

234 

235 

236 

237 

238 

239 

240 

241 

242 

243 

244 

 
 

245 

246 

Figure 1: Snapshots of the sea surface salinity on 16 May 2014 from 4D-Var analyses on the three nested grids 
denoted (a) G1, (b) G2, and (c) G3. The location and extent of grids G2 (black rectangle) and G3 (red rectangle) are 
shown superimposed on G1 in (a) and G2 in (b). Also shown in (c) are the locations of the Pioneer moorings array 
(black circles), and the nominal Pioneer glider array (colored lines). The 34.5 isohaline is often used as a proxy for 
the Mid-Atlantic Bight shelf-break front position and is highlighted in black in each figure. The locations of 
important geographical features are also shown in (a): GoM=Gulf of Maine, GB=Georges Bank, GSC=Great South 
Channel, MAB-Mid-Atlantic Bight, NEC=North East Channel, SS=Scotian Shelf (from Levin et al., 2020). 
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The data assimilation system used is the dual formulation of ROMS 4D-Var (Moore et al., 
2011a; Gürol et al., 2014). A full description of the 4D-Var system and its configuration can be 
found in Levin et al. (2018, 2019, 2020, 2021) and Wilkin et al. (2018), so only a very brief 
summary of the salient points is presented here. The data assimilated span the period Jan 2014 - 
Dec 2017 and are summarized in Table 1 from Levin et al. (2020). At the time that these 
calculations were performed, the ROMS 4D-Var system did not function across one- or two-way 
nested configurations, so the following strategy was adopted to assimilate the available 
observations into the three grids:  
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(i) Data were first assimilated into G1 for the full 2014-2017 period using a 3-day 
assimilation window. In this case, the model initial conditions, surface forcing, 
and open boundary conditions were treated as control variables. The background 
state estimate for each 3-day window was taken to be the analysis at the end of the 
previous cycle.  

(ii) Step (i) was repeated for grid G2, using the 4D-Var analyses from each cycle of 
G1 as the background open boundary conditions for each 4D-Var cycle of G2. As 
in G1, the control variables were the initial conditions, surface forcing, and open 
boundary conditions.  

(iii) Step (ii) was then repeated for grid G3. However, in this case, the data 
assimilation window was reduced to 1-day, with only the initial conditions and 
open boundary conditions used as control variables. The 4D-Var analyses from 
each cycle of G2 were used as the background open boundary conditions for each 
4D-Var cycle of G3. Also, because of the considerable increase in computational 
effort, 4D-Var was only run on G3 for the period Jan 2014 – Dec 2015.  
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Figure 2: Time series of log10 of the total number of observations (after the formation of super-observations) from 
all platforms assimilated during each 4D-Var cycle on the grid (a) G1, (b) G2, and (c) G3. Time series of the total 
number of observations from each platform are also shown for (d) G1, (e) G2, and (f) G3: SST – solid black line; 
SSH – solid blue line; in situ temperature – solid red line; in situ salinity – green dashed line; gridded HF radar – 
black dashed line; in situ velocity – cyan line; the total number of observations rejected by the background quality 
control – orange line (from Levin et al., 2020) 
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Type & 
platform 

Source 
Sampling rate 
and resolution 

Super-obs 1 averaging
Obs error 

G1 G2 G3 

AVHRR IR SST 
MARACOOS.org 
& NOAA 
Coastwatch 

4 passes per 
day, 1 km 3 h 3 h 3 h B�  

GOES IR SST NOAA Coastwatch Hourly, 6 km 3 h 3 h 3 h 2B�  
AMSR2, TRMM 
and WindSat 
microwave SST 

NASA JPL 
PO.DAAC Daily, 15 km 3 h 3 h 3 h 1.25B�  

SSH Jason, 
AltiKa, CryoSat RADS, TU Delft ~1 pass daily,  

~7 km    0.04 m 
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in situ T, S: 
NDBC buoys, 

 3 Argo floats, Met Office En4.2 Variable2 Std.lev2 Std.lev2 Std.lev2 0.25B�B� B/⁄ 	F
XBT, surface 
drifters 
Surface velocity: MARACOOS.org Hourly, 6 km 24 km 24 km 24 km 0.5B� HF-radar 
in situ T,S: 

2 h,  1 h, 0.33 h, 3MARACOOS IOOS Glider DAC Variable2 0.25B�B� B/⁄ 	F  
Std.lev2 Std.lev2 Std.lev2 

gliders 
in situ T,S:  Hourly, 10 

    B�  Gulf of Maine buoys  NERACOOS.org4

in situ u,v:  Hourly, 9      0.5B� Gulf of Maine buoys1

~3 h profiles,  
in situ T,S: 7 moorings5 2 h, 2 h, 0.33 h, 3Pioneer 0.25B�B� B/⁄ 	F  ~60% data Std.lev2 Std.lev2 Std.lev2 
moorings availability6NSF Ocean   
in situ T,S: Observatories Variable2  2h,  2h, 0.33 h, 30.25B�B� B/⁄ 	F  Pioneer gliders Initiative7 ~4 h, ~4 km Std.lev2 Std.lev2 Std.lev2 
in situ u,v: 30 min,  
Pioneer ~75% data Std.lev2 Std.lev2 Std.lev2 0.5B� 

 moorings availability6

 290 

Table 1: A summary of the observational data assimilated into ROMS during 2014–2017, the procedure for forming 
super-observations, and the observation errors assigned to each observation type (from Levin et al., 2020). In the 
final column, B  and B  denote the standard deviation of observation errors and background errors, respectively; the � �
formulae given are the scaling relationships used for the indicated observation types. The superscripts provide 
additional information. 1: All data sampled at a horizontal resolution higher than that of the model were formed into 
super observations at the resolution of the ROMS grid unless otherwise indicated. 2: Profile data were binned in the 
vertical using the World Ocean Data atlas standard depths (Boyer et al., 2009). 3: Here,  B  is the standard deviation �
of all observations that fall within a vertical bin (see comment 1), and B  is the maximum value of all  in a /	F B
vertical profile. 4: NERACOOS = North East Regional Association Coastal Ocean Observing System. 5: Moorings 
2 and 4 deployed in November 2017. 6: Average over 2014-2017. 7: Data downloaded from NSF OOI Data Portal 
http://ooinet.oceanobservatories.org and aggregated by platform at www.myroms.org:8080/erddap/info. 

As discussed in Moore et al. (2011a), the background error covariance � matrix in ROMS is 
modeled following the diffusion operator approach of Weaver and Courtier (2001). Table 2 
summarizes the decorrelation length scales assumed in � for errors in each control variable on 
the three model grids used here, and these parameter choices are discussed in Levin et al. (2019).  

State variable Horizontal decorrelation 
scale (km)  

(G1|G2|G3) 

Background quality 

control parameter G  
(G1|G2|G3) 

SSH 40 | 14 | 5 5 | 5 | ∞ 
Velocity  40 | 14 | 5 1.5 | 1.5 | ∞ 
Temperature 15 | 14 | 5 6 | 6 | 6 
Salinity 15 | 14 | 5 12 | 12 | 12 
Surface forcing 100 | 100 | - - 
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Table 2: A summary of the decorrelation scales assumed for background errors in each control variable on all three 
grids. The vertical decorrelation length scale for all state variables of the initial conditions and open boundary 
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conditions was chosen to be 10 m. In the case of the surface forcing, the same horizontal decorrelation lengths were 
imposed on all fields. The parameter G used for the background quality control rejection criteria is also indicated: 
G = ∞ indicates that no background quality control check was applied to these data. A dash in any column indicates 
that the parameter is not applicable. 
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The observation error covariance matrix � was assumed to be a diagonal matrix, and Table 1 
summarizes the errors and uncertainties that were assigned to measurements from each observing 
platform. These errors reflect a combination of measurement error and errors of 
representativeness (i.e., uncertainties associated with the ability of the model grid to resolve all 
of the processes that are captured by the observations) and are also discussed in Levin et al. 
(2019). Following Andersson and Järvinen (1999), quality control was performed during each 
4D-Var cycle. Specifically, the innovation I  associated with each observation is compared to �
the standard error based on the assumed standard deviations of the background (B ) and �
observation (B ) errors. For a chosen threshold G, an observation is rejected and not included in �
the analysis if I; > G;�B; + B;�. The thresholds G depend on the type of observation and are � � �
given in Table 2 for the analyses on each grid considered here. 
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Time series of the total number of observations assimilated into the model on each grid (after the 
formation of super observations) during a 4D-Var cycle are shown in Fig. 2. Also shown are time 
series of the number of observations from each observing platform. The number of observations 
from each platform is similar across all three grids, apart from satellite altimetry. The number of 
altimeter overpasses decreases dramatically, going from G1 to G3 due to the reduced 
geographical extent of each nested grid. 
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The performance of the 4D-Var system on each of the three grids has been documented in detail 
by Levin et al. (2019, 2020, 2021). Suffice to say, the system performs well across all three 
grids, and interested readers are encouraged to refer to these previous studies for more details. 
An example 4D-Var analysis from each grid is illustrated in Fig. 1, which shows sea surface 
salinity on 16 May 2014. At this time, a streamer of saline water associated with a large Gulf 
Stream eddy can be seen impinging on the shelf, an event that has been studied in detail by 
Zhang and Gawarkiewicz (2015). Figure 1 shows very clearly how the 4D-Var circulation 
estimates can capture the range of scales from quasi-geostrophic down to the sub-mesoscale 
secondary circulations as the grid resolution increases.  
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 345 

 346 

Figure 3: Time series of the RAM amplitudes log �|$6 |� (black line) and log �|$6 |� (red line) associated with the �L � �L N
1st outer-loop of each 4D-Var analysis cycle for (a) G1, (b) G2, and (c) G3. 
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4 Reduced Rank Array Modes 
 
The incremental 4D-Var procedure outlined in section 2 is equivalent to minimizing a cost 
function that represents the squared difference between �	 and ��, and the observations and �	 
evaluated at the space-time observation locations, weighted by the inverse background error and 
observation error covariance matrices respectively (e.g., Courtier et al., 1994). The desired best, 
linear, unbiased, estimate is given by (1), and, as outlined in section 2, can be identified using 
CG methods via a sequence of inner-loop iterations. In keeping with the usual practice, the 
incremental formulation of 4D-Var adopted in ROMS also employs an outer-loop, and the ocean 
state about which � and ��are linearized is updated after every 4 inner-loops. The ROMS 4D-
Var analyses described in section 3 were computed using two outer-loops and seven inner-loops, 
in which case �	 = �� + +�� + +�  where the subscript refers to the contribution from each ;
outer-loop. In this case, each +� can be expanded in terms of the RAMs appropriate for the 
outer-loop under consideration. Levin et al. (2020) showed that it is in the 1st outer-loop that 
increments are largest and where the observations have the greatest impact on the final analysis. 
Therefore, in the sequel, we will focus on the RAMs of the first outer-loop for the 4D-Var 
analyses of section 3. In addition, we will demonstrate in section 5 how the RAMs can be used to 
quantify the influence of data assimilation on the expected forecast errors, and there, for 
mathematical convenience, we will focus on a single 4D-Var outer-loop. 
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 370 
Figure 4: The SST components of each RAM are shown in (a)-(g) for G2 from the 1st outer-loop of the 4D-Var 
cycle starting on 17 Sept 2015. The nominal extent of the Pioneer glider array is also indicated (black box), and the 
units are °C. The thin dashed line indicates the extent of the model grid. (h) The eigen spectrum "7  of the 1st outer-�
loop for the same 4D-Var cycle. (i) The eigenvector 5  (black line) and 5  (red line) for the same 4D-Var cycle. � N
Both (h) and (i) are unitless. 
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Following (5) and (6) and recalling that 4 = 7 for the 4D-Var analyses considered here, there 
will be seven RAMs for each outer-loop. Figure 3 shows time series of |$6 | and |$6  N|, the �
absolute value of the amplitudes of the RAMs associated with the largest eigenvalue "7  and �
smallest eigenvalue "7  of �- for the 1st outer-loop of each 4D-Var cycle in the three grids. On N /
average, |$6 |⁄|$6 | varies in the range ~10-103, although there are some cycles where the ratio N �
can be as high as 105. Therefore, errors and uncertainties in the innovations ( that project onto 
RAM %-  will have considerably more influence on the analysis increments than those that N
project onto RAM %- . �
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To illustrate the typical structure of the RAMs, Fig. 4 shows the sea surface temperature (SST) 
associated with each RAM of the 1st outer-loop for the 3-day 4D-Var cycle spanning the interval 
17-19 Sept 2015 on G2. Specifically, Fig. 4 shows the RAM SST on 17 Sept at the beginning of 
the assimilation cycle. RAMs %-  (Fig. 4a), %-  (Fig. 4b) and %-  (Fig. 4c) have largest amplitude � ; P
in the vicinity of the Pioneer Array. Conversely, RAMs %-  through %-  generally have more Q N
complicated SST structures that span a larger portion of the model domain. The eigenvalue 
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spectrum of  �-  for this 4D-Var cycle is shown in Fig. 4h and spans about two orders of /
magnitude. 
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393 

 394 
Figure 5: The SST innovations for three separate AVHRR overpasses are shown in (a)-(c). The corresponding SST 
components of 1 5  are shown in (d)-(f) and those for 1 5  in (g)-(i) on the same days. Units are °C in all panels. / � / N
The thin dashed line indicates the extent of the model grid.  Note that panel (d) is scaled by a factor of 10 for 
convenience. 
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It is important to reiterate that the RAMs do not depend on the observation values, only on their 
locations (in concert with the background state and the error covariances). To illustrate this 
aspect of the RAMS, Fig. 4i shows the structure of 5  and 5 , the leading and trailing � N
eigenvectors of the Lanczos decomposition of the inner-loop iterations, during the same G2 
assimilation cycle. According to (5), the leading and trailing RAMs are given by %-� =
���1 5  and %- = ���1 5  representing the projection of i n/ 5 and n Fig. 4i i to state-� N / N � 5N 
space. Specifically, the elements of 5  and 5  represent weights for the Lanczos vectors that � N
form the columns of 1 . The weighted sums of the Lanczos vectors / 1/5� and 1/5 are then N 
mapped into state-space by the adjoint observation operator ��, which in 4D-Var involves an 
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integration backwards in time. After the mapping into state-space, the state-vector is multiplied 
by the background error covariance � which has the effect of smoothing the fields according to 
the decorrelation length scales assumed in Table 2. The smooth nature of the RAM SST in Figs. 
4a and 4g is very evident for these two modes. 
 
During the 17-19 Sept 2015 4D-Var cycle, the most abundant observations are SST from several 
different platforms. Figures 5a-c show the innovations associated with three separate overpasses 
of the AVHRR instrument on different days, while Figs. 5d-f show the elements of 1/5  �
associated with the same observations. There is little or no correspondence between the 
innovations in Figs. 5a-c and the image of 5  mapped into state-space shown in Figs. 5d-f. �
However, the SST structure of the associated RAM %-  (cf. Fig. 4a) is already evident in Figs. �
5d-f. Conversely, Figs. 5g-i show the elements of 1 5  at the AVHRR observation locations, / N
and some features of RAM %-  (cf. Fig. 4g) are already apparent. Thus, the absence of any N
general correspondence between the RAM structures and the innovations further illustrates the 
their independence from the observation values.  
 
The structure of RAM %-  appears to be closely aligned with the location of the � in situ 
observations. For example, Fig. 6 shows the 3-dimensional temperature structure of  %-  on 17 �
Sept 2015 on G2 in the vicinity of the Pioneer mooring array, and the region of the ocean 
informed by the RAM appears to be closely aligned with some of the in situ mooring 
observations. The same is true for the other state-vector components of RAM %-  (not shown). �
 

409 

410 

411 

412 

413 

414 

415 

416 

417 

418 

419 

420 

421 

422 

423 

424 

425 

426 

427 

428 

429 

430 

 
 

431 

432 

Figure 6: The close-up of the 3-dimensional structure of the %-  upper-ocean temperature field on 17 Sept 2015 for �
G2 in the vicinity of the Pioneer mooring array. The color scale is as follows: blue = -0.3°C, green = -0.1°C, yellow 
= 0.1°C, red = 0.2°C. The cyan triangles indicate the location of the in situ observations during the 4D-Var cycle. 
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The contribution of each RAM to the 4D-Var increment is given by $6 , and according to Fig. �%-�
3, it is anticipated that %-  will contribute the most. This is confirmed in Fig. 7, which shows the N
root mean square (RMS) of SST averaged over all 4D-Var cycles on each grid associated with 
%-  and %- . RAM %-  clearly dominates, which is also the case at depth and for other fields (not � N N
shown). Thus, much of the detailed structure in the analysis increments is associated with the 
trailing RAMs. It is important to note that while the 5  are orthogonal, the RAMs are not, so Fig. �
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7 cannot be interpreted as the contribution of %-  and %-  to the total SST variance of the � N
increments. 
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 446 
Figure 7: The RMS SST (°C) of $6 %-  (top row) and $6 %-  (bottom row) averaged over all 4D-Var cycles for (a,b) � � N N
G1, (c,d) G2, and (e,f) G3. Units are °C in all panels. The thin dashed line indicates the extent of each model grid. 
 
It is important to note that the RAMs comprise components that are associated with all elements 
of the 4D-Var control vector. Therefore, in the case of G1 and G2, this includes fields of surface 
flux forcing and for the open boundary conditions in the case of all three grids. In the interest of 
brevity, we will not discuss these additional components of the RAMs here. 
 
Taken together, Figs. 4 and 7 indicate that the leading RAMs of G2 appear to be primarily 
associated with the Pioneer Array. In contrast, the trailing RAMs span most of the model domain 
and are largely controlled by the location of remote sensing footprints. The RAMs of G1 also 
confirm this picture (not shown). However, as demonstrated in section 6, this view is an 
oversimplification. 
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5 The Impact of Data Assimilation on Expected Forecast Uncertainty 
 
5.1 Analysis and forecast error covariance 

 
As discussed in section 2, the RAMs can be interpreted as interpolation patterns for the 
innovations into state-space and provide quantitative information about the sensitivity of the 
analysis increments to measurement errors and errors of representation (see also section 6). This 
idea can be exploited further to quantify the expected errors in analyses and subsequent forecasts 
that arise from uncertainties in the innovations. The analysis increment at the beginning of the 
4D-Var analysis cycle is given by +� = �( = ∑/ $6 %- . Therefore, uncertainty in the �'� � �
observations and background will manifest as uncertainties in the innovation vector (, which 
enter through the 2nd equality as uncertainties in $6 , according to (6). For the best, linear, �
unbiased estimate RS+�T = U, where RS⋯ T is the expectation operator. Similarly, the expected 
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covariance of the increments associated with uncertainties in ( is given by W = RS+�+��T =
�RS((�T�� = � − X, where X is the expected analysis error covariance (Daley, 1991).2 Hence, 
W represents the reduction in the background error covariance due to assimilating the 
observations since ‖X‖ < ‖�‖ for any norm (see footnote 2). Expressing +� in terms of the 
RAMs, it can be shown that3: 
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W = ∑/ 81 − "7��
� :%-�%- �    (7) �'� �480 

 481 

using the expected covariance properties of (. At the end of the 4D-Var analysis window, the 
analysis increment is well approximated by Z+�, where Z represents the tangent linear model 
linearized about the time-evolving background state-vector. Therefore, (7) can also be used to 
compute the expected error variance, ZWZ� = Z�Z� − ZXZ�, at the end of the analysis 
cycle by merely replacing each RAM %-  in (7) by the time evolved RAMs Z%- . During the � �
analysis cycle, the surface forcing and open boundary condition components of %-� are also used 
as inputs for Z. The 4D-Var analysis at the end of the assimilation window is commonly used as 
the initial condition for a forecast. Similarly, the 4D-Var increments +� can be propagated into 
the forecast interval using Z linearized about the 4D-Var background (also extended into the 
forecast interval), and subject to the appropriate forecast boundary conditions and surface 
forcing. 
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 495 
Figure 8: A schematic showing a typical analysis and forecast cycle. The background for the 4D-Var analysis cycle 
spanning the interval [−\, 0] is denoted as ��. 4D-Var yields an estimate of the ocean state denoted �	�0�, which 
can be used as the initial condition for a forecast over the interval [0, ^]. The forecast state resulting from the 4D-Var 
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2
 From the expected covariance of the innovation vector W = �RS((�T�� = ������ + ����, and, using (2) W =

���. The analysis error covariance matrix X = �. − ���� which shows that ‖X‖ < ‖�‖ for any norm, and 
furthermore, 
3

� − X = ��� = W. 
 The increment +� = ∑/

�'� $6�%-� so that W = RS+�+��T = R_∑/ / � = / / �. �'� ∑`'� $6�$6`%-�%-` a ∑�'� ∑`'� R_$6�$6`a%-�%-`
Using (6), R_$6 $6 a = "7��"7��5�1�  ������� �RS((�T�������1 5 . From (4), � ` � ` � / / ` RS((�T =
�1 2 1�  ����, and recalling that 1�  ���� w/ / / / 1/ = ./ e can write R_$6�$6`a =
"7��"7��5�2 1�  �����������1 5 . Recall that  and that the symmetric tridiagonal matrix � ` � / / / ` 2/5� = "7�5�
2/ ≡ 1�

/ ������������ + .�1 , in which case / R_$6�$6`a = "7��
` 5�

� �2/ − ./�5` = "7�� �
` 8"7� − 1:5� 5` =

"7��8"7 − 1:+ , where +  is the Kronecker delta-function. Therefore, ` � �,` �,` R_$6�$6`a = 81 − "7��
� :+  and �,` W =

∑/
�'�81 − "7��:%- %- �. � � �
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analysis is denoted �	. If the 4D-Var background is extended through the forecast interval, this yields a second c
forecast ��, and the difference �� − �	 represents the impact of data assimilation on the forecast. c c c
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While an estimate of the expected analysis error covariance matrix ZXZ� at the end of the 
analysis cycle is desirable, it is challenging to compute in 4D-Var (e.g., Fisher and Courtier, 
1995; Ngodock et al., 2020; Moore and Arango, 2021), one reason being that the contribution of 
the background error covariance Z�Z�  is computationally demanding to calculate. Reduced-
rank estimates are one approach, although they tend to underestimate the analysis errors (Fisher 
and Courtier, 1995; Moore et al., 2011b). Ngodock et al. (2020) have demonstrated a Monte 
Carlo approach for estimating X based on computing an ensemble of 4D-Var analyses by 
perturbing the so-called “representer coefficients” d = ����� + ����(. This approach is 
related to that used here. However, in our case, we capitalize on the known covariance properties 
of the RAM amplitudes in (7) without the need to compute an explicit ensemble of analyses and 
forecasts. In the case of the expected forecast error covariance, some additional computational 
cost is involved since each RAM (or equivalently each Lanczos vector 3 ) must be propagated to �
the end of the forecast interval using the tangent linear model Z. Since the computational cost of 
Z in ROMS is about 50% more than a run of the nonlinear forecast model, then, for forecast lead 
times that are similar in length to the assimilation window, the additional calculations required 
are ~1.54 where 4 is the number inner-loops (and of course the number of RAMs). In the 
examples here 4 = 7, so the additional computational burden is equivalent to running an O(10) 
ensemble of forecasts. This is much smaller than the ensemble size required to estimate ZXZ�  
using, say, the randomization method of Fisher and Courtier (1995) in which a sample size 
~5000 would be needed to yield an estimate of the leading diagonal accurate to ~1%. 
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Figure 9: The G2 4D-Var background SST (°C) used as the �� forecast initial condition on 20 Sept 2015 is shown c
in (a). The 3-day and 7-day forecast SST fields of �� are shown in (b) and (c), respectively. The c standard deviations 
given by the square-root of the diagonal elements of Z�−\, ^�WZ��^, −\� for SST (°C) are shown for the same 
dates in (d), (e), and (f). The corresponding standard deviations for the forecasts of SSS (g,h,i), SSH (cm) (j,k,l) and 
surface current speed (ms-1) (m,n,o) are also shown. The blue lines in (f) and (i) represent the location of the vertical 
sections along 70.5ºW shown in Fig. 10. 
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To illustrate the utility of our approach, consider the two forecasts illustrated schematically in 
Fig. 8. Forecast �	�^� is initialized from the analysis �	�0� at the end of each 4D-Var analysis c
cycle, while forecast ���^�  is initialized from the background c ���−\� of the 4D-Var cycle. The 
forecast �	�^�, therefore, benefits from the data that were assimilated during the 4D-Var cycle c
spanning the interval [−\, 0], while forecast ���^� does not. The expected forecast error c
covariances of �	

c �^� and ��
c �^� are given by Z�−\, ^�XZ��^, −\� and Z�−\, ^��Z��^, −\� 

respectively, where the ordering of the time arguments indicates the direction of integration. 
Therefore, Z�−\, ^�WZ��^, −\� = Z�−\, ^��Z��^, −\� − Z�−\, ^�XZ��^, −\� represents the 
change in the forecast error covariance associated with assimilating the observations. Since the 
covariance information is propagated using Z�−\, ^�, the resulting covariance matrices represent 
1st-order approximations.  
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Following this approach, forecasts were initialized at the end of the 1st outer-loop of each 3-day 
4D-Var cycle on G1 and G2 respectively for the period 1 Jan – 31 Dec 2015. The forecast 
duration was 10-days for G1 and 7-days for G2. A longer forecast interval was used in G1 
because of the larger geographical extent of the model domain. For such extended forecast 
periods, true forecast fields are not available for the NCEP-NAM surface forcing. Therefore, for 
convenience, a best time series concatenation of the 1-day forecast NCEP-NAM meteorology 
and Mercator-Océan open boundary data were used during these forecast experiments. In the 
near real-time MARACOOS system for G1, true 3-day forecast products from the respective 
operational centers are employed. 
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 554 

Figure 10: The SST (ºC) (a,b,c) and SSS (d,e,f) forecast differences for  �	 − ��  on the days indicated. The 4D-Var c c
analysis increments at the forecast start time are shown in (a) and (d), while (b,e) and (c,f) represent 3-day and 7-day 
forecast differences, respectively. 
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Figures 9a-c show an example SST forecast for �� using G2 for the period 20-27 September c
2015. The forecast initial condition for SST is shown in Fig. 9a, where a large warm-core Gulf 
Stream ring dominates the circulation. During the subsequent 7-days of the forecast, the ring 
circulation evolves, and a filament of cooler, fresher water circulates anticyclonically around the 
eastern and southern margins of the eddy (Figs. 9b and 9c), while a train of secondary 
instabilities develops along the ring’s northern edge. Figures 9d-o show the square root of the 
diagonal elements of Z�−\, ^�WZ��^, −\� computed using (7). For brevity, we will refer to 
these as the “standard deviations” but recognize, of course, that the square root of the difference 
in the background error and analysis error variances does not represent the difference between 
the corresponding standard deviations. The standard deviations are shown in Figs. 9d-o for SST, 
sea surface salinity (SSS), sea surface height (SSH), and surface current speed. Since 
Z�−\, ^�WZ��^, −\� represents the difference between the background error covariance and the 
expected analysis error covariance due to assimilating the observations, Figs. 9d-o indicate the 
reduction in the expected analysis and forecast error variance due to assimilating observations 
during the 4D-Var cycle spanning 17-19 September. The influence of the circulation is very 
evident in Fig. 9, especially in the case of SST (Figs. 9d,e,f) and SSS (Figs. 9g,h,i). In particular, 
data assimilation reduces the expected error in the anticyclonic filament of cooler, fresher water 
by ~1℃ (SST) and ~0.5 (SSS). The expected reductions in error standard deviation in SSH 
(Figs. 9j,k,l) and surface current speeds (Figs. 9m,n,o) are more modest and are ~2 cm and ~15 
cm s-1, respectively.  
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The forecast differences �	 − �� computed from the nonlinear model forecasts for SST and SSS c c
for the same period are shown in Fig. 10 and are fairly large. For example, Fig. 10 indicates that 
with the benefit of data assimilation, the forecast initialized from  �	 generally leads to an 
increase in temperature and salinity of the filament that is advected anticyclonically around the 
eddy. Therefore, the corresponding features in Fig. 9 represent a reduction in the standard 

deviation of the forecast error associated with these changes. Regions in Fig. 9 where the 
standard deviations are close to zero correspond to locations and fields where data assimilation 
has little impact on the expected forecast error variance and have an error variance similar to the 
background. This does not mean that the forecast is not accurate, only that the forecast is not 
benefiting in any significant way from the most recent data assimilated into the model. 
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 591 
Figure 11: Vertical sections of upper-ocean temperature (ºC) (a) and salinity (c) along 70.5ºW on forecast day 7 (27 
Sept 2015) for the case shown in Fig. 9. Vertical sections of the standard deviations computed from the square-root 
of the diagonal elements of Z�−\, ^�WZ��^, −\� are also displayed for temperature (ºC) (b) and salinity (d) on the 
same forecast day. 
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The vertical structure of the forecast temperature and salinity along 70.5ºW over the upper 250 m 
of the water column is shown in Figs. 11a and 11c, respectively, on forecast day 7. The signature 
of the warm core ring is very evident, with the main thermocline reaching depths ~150 m in the 
core of the ring (Fig. 11a). The signature of the cooler, lower salinity filament at the southern 
edge of the eddy is also visible near 39 ºN. Figures 11b and 11d show the corresponding vertical 
structure of the temperature and salinity “standard deviations” computed from 
Z�−\, ^�WZ��^, −\� for the same forecast day. Elevated values of expected error reduction are 
prevalent on the continental shelf, and following the cooler, lower salinity filament, and extend 
to depths below 500 m (not shown). 
 
5.2 Spatio-temporal variations 
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The reduction in total expected forecast error variance due to assimilating the observations is 
^g8Z�−\, ^�WZ��^, −\�: which can be thought of as the squared distance between ��

c �^� and 
�	�^� in Fig. 8. Similarly, the reduction in total variance associated with a particular forecast c
variable is given by the appropriate sub-trace of Z�−\, ^�WZ��^, −\�. The reduction in total 
variance at forecast time ^ relative to that the beginning of the forecast cycle provides a measure 
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of the change in the distance between the forecasts  ���^� and �	�^�. With this in mind, Fig. 12 c c
shows time series of h�^� = log�L_^g8Z�−\, ^�WZ��^, −\�:i^g8Z�−\, 0�WZ��0, −\�:a versus 
forecast lead-time ^ (cf. Fig. 8) for the sub-trace associated with all- temperature grid points. 
Thus h�^� can be viewed as an index of the change in the relative distance between the forecasts. 
Time series are presented for all 2015 forecast cycles on G1 and G2. Instances for which the 
relative distance h�^� > 0 represent forecast times for which the sub-trace variance at time ^ is 
higher than that of the forecast initial condition at time 0 (cf. Fig. 8). In other words, the 
temperature forecasts of ���^� and �	�^� are farther apart. These situations correspond to cases c c
where the total temperature variance of Z�−\, ^��Z��^, −\� − Z�−\, ^�XZ��^, −\� increases 
with forecast lead-time, meaning that the forecasts �	

c �^� and ��
c �^� are diverging through time 

and indicate a persistent benefit of data assimilation for �	�^�. Conversely, when the c relative 

distance h�^� < 0, the squared distance between the forecasts �	  and �  is decreasing c �^� �c �^�
over time, and the benefits of data assimilation for �	�^� are being slowly lost. c
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Figure 12: Time series of the relative distance between the forecasts  h�^� =
log _^g8Z�−\, ^�WZ��^, −\�:i^g8Z�−\, 0�WZ��0, −\�:a for the sub-trace describing the total temperature �L
variance for each 4D-Var analysis-forecast cycle during 2015 in (a) G1 and (b) G2 as a function of forecast lead 
time. 
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Figure 12 indicates that for most forecast cycles and lead times, the relative distance h�^� > 0 
and the benefits of data assimilation during the 4D-Var analysis cycles extends throughout the 
forecast interval. This is particularly true for G1 (Fig. 12a). For G2 (Fig. 12b), there are more 
instances when h�^� < 0 showing more cases when �	�^� and ���^� converge in this domain. c c
Time series of h�^� for other state-vector fields display similar behavior. Yet, for SSH and 
velocity, the number of instances when h�^� < 0 is generally higher than for temperature (not 
shown). The difference in behavior between G1 and G2 can be understood in terms of the 
relative horizontal resolution of the two grids. While G2 better resolves the mesoscale 
instabilities than G1, G2 is more susceptible to the growth of forecast errors due to the more 
energetic, higher Rossby number, circulation. Being inherently less predictable to the added 
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nonlinearity, we would expect the forecast skill of G2 to degrade on shorter time scales than in 
G1. 
 

Figures 13a-d show the square root of the mean-variance associated with SST and SSS analyses 
and 7-day forecasts computed from the average of Z�−\, ^�WZ��^, −\� over all analysis-
forecast cycles for 2015 in G2. Large reductions in expected error occur in the vicinity of the 
Pioneer Array and are associated mainly with the observations collected by the array. However, 
there are significant reductions in the expected error farther afield, clearly related to persistent 
circulation features, such as the equatorward shelf-break jet in the MAB. The decrease in error 
can be as large as 3℃ in SST and >0.5 in salinity. Also, Figs. 13e-h shows the square root of the 
mean-variance for analyses and 10-day forecasts in G1. The expected error reduction in the G1 
4D-Var analyses and forecasts are quantitatively similar to those in G2 and again highlight the 
local influence of the Pioneer Array. The larger-scale circulation effect is also evident in G1, 
with significant reductions in the expected error extending toward Georges Bank because 4D-
Var propagates information dynamically upstream to the source region of waters that 
subsequently flow through the Pioneer Array. 
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Figure 13: The square root of the average variance for SST (ºC) and SSS computed from Z�−\, ^�WZ��^, −\� for 
all analyses and forecast cycles for G2 (a-d) and G1 (e-h). Forecast day 7 is shown for G2 and forecast day 10 in the 
case of G1. The color bar is saturated in all instances to accentuate the regions of the highest average variance.  
 
5.3 Observation impacts on analysis and forecast error covariance 
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Much of the impact of data assimilation on the forecast state given by �	
c �^� − ��  can be c �^�

attributed to the RAM associated with the smallest eigenvalue. To illustrate, consider again the 
G2 forecast illustrated in Fig. 10 for the period 20-27 September 2015. Figures 14a and 14b 
show the SST and SSS components of �	�^� − ���^� associated with RAM (c %-  c N i.e., 
$6 Z�−\, ^�%- ) on forecast day 7 and are very similar to Figs. 10c and 10f. Therefore, much can N N
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be learned about the impact of data assimilation on the expected forecast errors from %-  alone. N
Furthermore, the good agreement between Figs. 14ab and Figs. 10cf, confirms that the tangent 
linear approximation remains valid over this timescale. 
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According to (6), the amplitude of RAM %-  is given by the dot-product of the innovation vector N
( with the vector "7���������1 5 . Therefore, the contribution of each observation to $6  can N / N N
be quantified. The forecast differences shown in Figs. 14a and 14b result from assimilating 
observations during the preceding 4D-Var analysis cycle spanning the period 17-19 Sept. Figure 
14c shows the contribution of each observation type assimilated during this period to the RAM 
amplitude $6 . The largest contribution is from satellite SST, although N in situ velocity 
measurements from the Pioneer Array moorings are a close second. The contribution of in situ 
temperature observations, mainly from Pioneer Array moorings and gliders, are also significant. 
The location of the in situ observations during this 4D-Var cycle are indicated in Fig. 6. Thus, 
the partitioning of the amplitude of the dominant RAM across the different observing platforms 
is a useful and alternative approach for quantifying the impact of the assimilated observations on 
the forecast. The standard method for quantifying observation impacts in ROMS follows the 
adjoint-approach of Langland and Baker (2004) where the impact of each observation on a 
chosen analysis or forecast metric is computed. While this approach is generally quite efficient, it 
requires separate calculations for each metric and forecast lead time. The alternative approach 
that we are advocating here, however, is independent of any metric and forecast lead time. 
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Figure 14: The contribution of %  to the G2 SST (ºC) (a) and SSS (b) 7-day forecast differences  �	�^� − ���^� on N c c
27 Sept 2015. (c) The contribution of each observation type assimilated during the pre-forecast 4D-Var cycle (17-19 
Sept 2015) to $6 : SST – satellite SST; SSH – along-track altimetry; HFR – surface current estimates from coastal N
HF radar; T,S – in situ temperature/salinity observations; u,v – in situ velocity observations. 
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 698 

As noted in section 2, the RAMs depend on the observation locations according to (5) and not on 
the observation values. Specifically, %- = ���1 5 , where the matrix-vector product � / � 1/5  �
represents an EOF of the R-preconditioned stabilized representer matrix. In the usual way, these 
EOFs provide information about the in-phase and out-of-phase relationships between various 
fractions of the total error variance at different observation locations. Since (5) is a linear 
equation, each RAM can be expressed as the linear superposition of the contribution from each 
element of 1 5  corresponding to specific observations. Figure 15 shows the contribution of the / �
1 5   EOF from information associated with the location of satellite SST, N in situ temperature, /
and in situ velocity observations to the 7-day SST forecast differences of �	

c �^� − ��
c �^� for G2 

on 27 Sep 2005. In keeping with Fig. 14, the contributions of EOF information at SSH, HFR 
radar, and in situ salinity observation locations are small, so are not shown. Consistent with Fig 
14a, the SST component of %-  in Fig. 15a accounts for much of the forecast change in SST. To N
the north of the warm core ring and on the continental shelf, the contributions of in situ 
temperature (Fig. 15b) and velocity (Fig. 15c) are mainly in opposition, while around the 
margins of the ring, these contributions reinforce each other. Thus, while there are considerable, 
and in some cases opposing, overlaps between the contributions of different observation types to 
%- , the general behavior in Fig. 15 confirms the observation impacts computed from the RAM N
amplitude $6 , which depends directly on the measurement values. N
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Figure 15: The contribution of the different components of 1 5  to the G2 7-day SST forecast differences / N �	

c �^� −
���^� on 27 Sept 2015 for: (a) satellite SST, (b) in situ temperature observations, (c)  velocity observations. c in situ

The locations of the in situ observations for temperature and velocity are shown in (b) and (c) as green dots. The 
units are ºC. 
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With this in mind, Fig. 16 shows the root mean square (RMS) contribution of each observation 
type to the RAM %-  amplitude $6  on each of the three grids. The period considered is Jan 2014 N N
– Dec 2015 which is the overlapping period for which 4D-Var analyses were computed for all 
three grids. Figure 16 indicates that for a given observation type, this measure of the observation 

impact varies considerably across the three grids. These grid-to-grid variations are controlled by 
several factors that include: (i) variations associated with differences in data coverage; for 
example, the number of along-track satellite altimeter overpasses decreases dramatically going 
from G1 to G2, with very few tracks passing over G3, (ii) variations in horizontal resolution; for 
example, the increase in the impact of in situ velocity observations going from G1 to G3 can be 
attributed to the greater ability of G3 to resolve unbalanced sub-mesoscale circulations and better 
utilize velocity observations from Pioneer (Levin et al. 2021), and (iii) variations in the 4D-Var 
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background error and observation error covariance matrices � and �. The a priori assumptions 
encapsulated in � and � vary from grid-to-grid. As discussed in Levin et al. (2020), the 
parameters used to compute the observation error covariance matrix, �, and background error 
covariance matrix, �, are not the same on the three grids. The observation error standard 
deviations, B , assumed for in situ temperature observations are similar across all three grids and �
range from ∼0.6◦C on G1 to ∼0.4◦C on G2 and G3. Yet, a posteriori analysis of the innovation 
statistics following the diagnostics described by Desroziers et al. (2005) suggests that B  should �
be closer to ∼1◦C, as noted in Levin et al. (2020). The a priori values of B  for in situ salinity �
observations were assumed to ∼0.2 on G1, while the a posteriori innovation statistics indicate 
that ∼0.4 is a more appropriate choice, the value subsequently adopted for both G2 and G3. This 
is one reason why the impact of salinity observations declines from G1 to G3. For velocity 
measurements, B  on G1 was assumed to be 0.6 ms−1 for HF radar surface current estimates � ∼
and ∼0.3 ms−1 for moorings but were adjusted downwards to ∼0.1 ms−1 and ∼0.04 ms−1 
respectively on G2 and G3 to be more in line with the a posteriori innovation statistics.  
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Figure 16: The root mean square contribution of each observation type to $6  averaged over all 4D-Var cycles N
spanning 2014-2015 for each of the three grids: G1 – blue; G2 – green; G3 – yellow. 

751 

752 

 753 

The observation impacts in Fig. 16 are generally consistent with the metric-based observation 
impact calculations presented by Levin et al. (2019, 2020, 2021) for the same ROMS 
configuration computed using the aforementioned adjoint-approach of Langland and Baker 
(2014). More discussion about the influence of the factors mentioned above on the metric-based 
observation impacts can be found in Levin et al. (2020, 2021). 
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6 Degrees of Freedom 
 
Consider the situation where � error-free observations are to be assimilated into an ocean model 
describing an l-dimensional state-space where � < l. In principle these observations can 
provide at most � independent pieces of information about the rank of the tangent linear 
observation operator � (Rodgers, 2000). However, in the presence of measurement errors (and 
rounding errors in the estimation problem, that contribute to ill-conditioning), the number of 
independent pieces of information will be less than �, thus reducing the effective rank of �. 
Eigen analysis of the R-preconditioned stabilized representer matrix �- = �������� + .� can 
be used to quantify the effective rank of � by identifying the number of eigenvalues " greater 
than 2. The corresponding array modes identify the sub-space that is effectively informed by the 
observations. Formally, this identifies the range of � and, to coin a phrase from Lanczos (1961), 
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represents the part of state-space that is activated by the observations. The sub-space orthogonal 
to the range is referred to as the null space. As discussed by Bennett (2002), the number of df of 
the 4D-Var cost function is �, and is partitioned between the df of the signal and the df of the 
noise due to the presence of observation error. The eigenvectors of �- with eigenvalues " ≫ 2 
contribute most to the df of the signal, while eigenvectors of �- with " < 2 contribute most to the 
df of the noise. 
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As shown in section 5, the RAMs associated with the smallest EOF variances " exert the greatest 
control on the 4D-Var analyses and ensuing forecasts. It is, therefore, important to determine 
whether the smaller scale circulation features associated with these RAMs (e.g., Fig. 4g) are 
reliable and physically relevant, or whether they contribute primarily to noise in the estimate. As 
noted above, the RAMs can be interpreted as state-space vectors that are associated with the df of 
either the signal or the noise that is resolved by the observing system. Formally, if " < 2, the 
associated RAMs cannot be distinguished from observation error. However, Bennett and 
McIntosh (1984) have argued for a much more conservative criterion in which fewer array 
modes are admitted to the analysis by rejecting those % for which "�⁄"� < 0.01. Given the 
practical difficulties and uncertainties in prescribing � and � for large and complex models, such 
a strategy seems very prudent. As demonstrated by MAE, the Bennett and McIntosh “1% rule” 
can be used to gauge the extent to which 4D-Var analyses may suffer from over-fitting to errors 
in the observations.  
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Figure 17: Time series of  "7 ⁄"7  for the 1st outer-loop for all 4D-Var cycles on (a) G1, (b) G2, and (c) G3. The N �
black dashed line indicates where "7 ⁄"7 = 1, and represents the cut-off threshold based on the Bennett and N �
McIntosh (1984) “1% rule.” 
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Following MAE, Fig. 17 shows the time series of  "7 ⁄"7  during the 1st outer-loop for the 4D-Var N �
analyses on the three grids. During the majority of cycles, "7N⁄"7� > 0.01 on all three grids 
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although there are a significant number of cycles for which  "7 , particularly on G1 N⁄"7� < 0.01
and G2, suggesting that we may be dangerously close to over-fitting the model to observation 
errors during these cycles. In these cases, the observations that control most RAM %-  may, in N
fact, be exerting an overly large impact on the analyses and forecasts. The situation is better on 
G3, where  "7 ⁄"7  exhibits a seasonal cycle with a tendency for potential over-fitting during N �
winter months. While this aspect of the data assimilation system clearly warrants further 
attention, Fig. 17 highlights how the RAMs can identify and monitor endemic issues within the 
system. 
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7 Summary and Conclusions 
 
In this paper, we have explored the properties of the MAB and GoM ocean observing systems 
using the RAMs of a state-of-the-art 4D-Var data assimilation system in a triply nested 
configuration of ROMS. Central to this work are two complementary interpretations of the 
RAMs. First, they provide information about the df of the observing system (in light of a priori 

assumptions about the background error covariance), and the 3-dimensional structures of the 
RAMs (cf. Fig. 6) provide a clear representation of the field-of-view of the observing array. This 
property of the RAMs has been exploited here to quantify the extent to which data assimilation 
reduces errors in ocean analyses and forecasts. Second, the RAMs can be interpreted as 
interpolation patterns for the observations into state-space (Bennett, 1985). We capitalize on this 
exegesis of the RAMs to elucidate the efficacy of the resulting ocean state estimates. 
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In the present case, Fig. 7 indicates that the RAMs associated with the most stable interpolation 
patterns on all three grids appear to be most strongly controlled by the in situ observations from 
the Pioneer Array. It is these observations that will generally contribute most significantly to the 
df of the signal. Given that the in situ observing platforms are in principle relocatable, an 
interesting future study would be to explore the extent to which the MAB and GoM observing 
system could be reconfigured and “optimized” to potentially provide a more complete view of 
the upper ocean circulation. Array modes have recently been used in this way by Le Hénaff et al. 
(2009) and Lamouroux et al. (2016) to evaluate different observing system designs in the Bay of 
Biscay.  Remote sensing observations are an essential component of the observing system, and in 
contrast to in situ observations, Fig. 7 suggests that they appear to control the 3-dimensional 
structures of the least stable RAMs. Thus, uncertainties in remote sensing data are likely to be 
the largest contributors to uncertainties in the ocean state estimates, and potentially contribute 
most to the df of the noise. However, the observation impact calculations discussed below 
suggest that this is not always the case.  
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A novel application of the RAMs presented here quantifies the extent to which ocean forecasts 
benefit from data assimilation. This was achieved by time-evolving the RAMs from each 
analysis cycle through the forecast interval, and using the known covariance properties of the 
RAM amplitudes to compute the difference between the expected forecast error covariances of 
forecasts with and without data assimilation, namely Z�Z� − ZXZ�. This type of analysis 
reveals first-hand how intimately the expected covariance properties of the forecast errors are 
tied to the underlying circulation. In addition, they quantify the extent to which information 
gained from data assimilation persists throughout the forecast. Our analyses also reveal the 
extent to which the observations can inform the forecast both locally and remotely through the 
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circulation dynamics, which in this study spans a variety of complex circulation regimes ranging 
from quasi-geostrophic down to the sub-mesoscale.  The Pioneer Array provides a powerful 
example of this last point in the present study. This is graphically illustrated in Fig. 13, which 
indicates the extent to which information from the Pioneer Array, in concert with the other 
elements of the observing system, is conveyed to other parts of the model domain. This study 
represents a proof-of-concept of the methodology and was applied to cases where forecasts were 
initialized from 4D-Var analysis computed using a single outer-loop. More work is required to 
adapt the method to the case of multiple outer-loops. 
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Since the RAM-based approach for quantifying the expected reduction in error covariance is 855 
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predicated on the tangent linear approximation, it is natural to enquire to what extent this 
approximation remains valid over the ~10-day duration of the combined analysis-forecast cycles 
employed here. If Δ��^� denotes the state-vector difference between the nonlinear model
forecasts 	  and � , and  is the corresponding forecast difference based on the
RAMs, then the correlation between Δ��^� and +��^� versus lead time ^ provides a quantitative
measure of the efficacy of the tangent linear approximation. Such an analysis on G1 and G2 (not 
shown) reveals a pronounced seasonal cycle with the lowest correlations during winter, and peak 
correlations during the summer. During winter, the cooling of the shelf waters enhances the 
horizontal temperature gradients in the vicinity of the Gulf Stream temperature front. This, in 
turn, will presumably favor faster growth of  (and ) via baroclinic instabilities and is most
likely a major reason why the tangent linear assumption is less robust during wintertime. 
However, much of the wintertime drop in correlation can be attributed to short length-scales 
associated with differences in localized perturbation growth of Δ��^� and +��^�. If both are
spatially low pass filtered, the average correlations between them are much improved at longer 
forecast lead-times and, for surface fields at a 7-day lead-time, correlations are typically greater 
than 0.5. Therefore, we feel confident that the patterns of error covariance, such as Figs. 9 and
11, provide useful information about the regions where forecasts are informed by data 
assimilation for periods ~1 week. 

An alternative approach for quantifying the impact of the observations on the expected analysis 
and forecast error covariance has also been explored here. The procedure is based on the 
contribution of each observation to the amplitude of the least stable RAM, in our case %- . WhatN
this of course suggests is that RAMs that may contribute most significantly to the df of the noise, 
are in fact the most impactful on the analyses and forecasts. The second equality in (6) shows 
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that the RAM amplitudes can be expressed as $6 = "��(�����%  . Thus, there are twoN N N
important factors that control the contribution (aka impact) of different observations on $6  forN
the least stable RAM. First, the RAM is sampled in observation space (i.e. �%-  ). Therefore, it isN
reasonable to assume that the observations that will exert the most influence on the RAM 
structure will also have a large impact on $6 since �%-   represents a resampling of the RAM atN
the locations of those very same observations. Second, the resampled RAM is rescaled by the 
inverse observation error variances (���), which will assign greater weight to observations with
small expected errors. As discussed in section 5.2, these factors weigh-in to differing degrees in 
the results of Fig. 16 which shows the RMS contribution of different observations to the dot-
product of the innovation vector ( with the vector "7������%- . Figure 16 indicates that N N in situ

observations are generally as impactful as SST observations. Therefore, while it is tempting from 
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Figs. 7b,d,f to attribute much of the structure of the least stable RAM to remote sensing 
observations, Fig. 16 indicates that in situ observations contribute significantly also. 
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The most common approach used at operational centers to quantify observation impacts on 
analyses and forecasts is metric-based, and as such, the observation impacts can vary across 
different metrics and through time. Conversely, the alternative approach introduced here is 
metric-independent, and quantifies the impact of the observations during any phase of the 
analysis and forecast cycle (while the tangent linear assumption remains valid) since the RAM 
amplitudes, for a given assimilation cycle, are time-invariant. The utility of the RAM-based 
approach will be evaluated in some of the near real-time systems currently being run in support 
of U.S. IOOS and reported later. 
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Another practical application of the RAMs applied here is monitoring of the efficacy of the 4D-
Var ocean state estimates. Specifically, an a posteriori analysis of the eigenvalues of the 
preconditioned stabilized representer matrix associated with 4D-Var analyses across the three 
nested grids suggests that the current system configuration may be uncomfortably close to 
overfitting the model to errors in the observations. This overfitting could potentially introduce 
unphysical features into the analyses, and it seems likely, based on Fig. 7, that the primary culprit 
is satellite observations. Therefore, some adjustments of the near real-time analysis-forecast 
system are probably warranted. Even though we have employed the lenient “1% rule” of Bennett 
and McIntosh (1984), the issue of overfitting deserves further attention and should be a 
cautionary tale for others engaged in ocean data assimilation who may also find that they too are 
unknowingly flirting with the detrimental influences of observation error. 
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The RAMs are straightforward to compute using the archived output from the 4D-Var system, 
and we have shown here that they can be a useful tool for monitoring the performance of a data 
assimilation system, and for placing bounds on the expected errors of ensuing forecasts. 
However, it is also of interest to speculate on additional important practical applications that 
capitalize on the properties of the RAMs. Specifically, since the RAMs provide flow-dependent 
covariance information (i.e., they are derived from the EOFs of the total expected rescaled error 
variance), they also have considerable potential utility for improving the data assimilation system 
itself. In particular, it has been demonstrated in numerical weather prediction (e.g., Lorenc et al., 
2015) that hybrid data assimilation approaches that combine climatological covariance 
information about the background errors with flow-dependent information about “errors of the 
day” generally out-perform systems that use this information independently. Hybrid approaches 
are also an active area of research in oceanography (see Moore et al. 2019). The ROMS 4D-Var 
system falls into the first category in that the background error covariance matrix � is based on 
climatological information. However, one can imagine a hybrid approach in which � = Go�o +
G �  where �  is the standard climatological background error covariance, and is a flow-	 	 o �	 
dependent background error covariance based on the RAMs, and that varies from cycle-to-cycle. 
The coefficients G  and G  are weights that can be determined based on theoretical considerations o 	
(Ménétrier and Auligné, 2015). For example, if we let � = W and choose G  	 o = 1 and G	 = −1, 
then we will recover a reduced-rank approximation of X, although what we really require for 
data assimilation is ZXZ� , as discussed in section 5.1. Ensemble methods are commonly used 
to estimate flow-dependent covariance information. However, due to the necessarily limited size 
of the ensemble, some form of localization is generally required to eliminate spurious 

915 

916 

917 

918 

919 

920 

921 

922 

923 

924 

925 

926 

927 

928 

929 

930 

931 

932 

933 

934 

935 

936 



 30 

correlations, which can be a computationally expensive procedure (Houtekamer and Zhang, 
2016). One advantage of using the RAMs to construct �  is that the expected covariance 	
properties of the RAM amplitudes is known a priori (cf. equation (7)) which circumvents the 
obvious need for localization since W in (7) represents the expected covariance arising from an 
infinite ensemble. To illustrate the flow-dependent information captured by W, Fig. 18 shows the 
standard deviations of SSS derived from W for the 4D-Var analyses shown in Fig. 1 on 16 May 
2014. The richness of the field and variance information is very evident and becomes 
increasingly more complex as the grid resolution increases. It would be next to impossible to 
adequately model the inhomogeneous fields, like those in Fig. 18, using conventional approaches 
to � , such as diffusion operators (as in section 3). Therefore, the RAMs offer a straightforward o
and convenient procedure for supplementing �. Information about the cross-covariances 
between the different components of the state-vector, and associated correlation length scales, is 
naturally embedded in W from which a hybrid approach can benefit. Even though �o is only 
weakly flow-dependent, 4D-Var is forgiving since ����  in (2) provides implicit flow-
dependent covariance information. It is this information that is mined by the RAMs and mapped 
to state-space by ��� and which we argue we can capitalize on using the approach that we are 
advocating here for constructing � . 	
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Figure 18: The square root of the reduction in expected analysis error variance in SSS for the same 4D-Var analysis 
shown in Fig. 1 for 16 May 2014. The 34.5 isohaline is also shown in each panel (black line) as a proxy for the Mid-
Atlantic Bight shelf-break front position. 
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With steady progress in the resolution capabilities of satellite altimeters and radiometers, and the 
advent of new, innovative, mobile, and adaptive observing platforms such as gliders and other 
autonomous underwater vehicles (AUVs), data assimilation at the ocean sub-mesoscale is a new 
and exciting frontier. Dense in situ observing systems, such as the Pioneer Array, offer 
extraordinary and unprecedented insight into the sub-mesoscale environment. Synthesizing these 
data using ocean models and data assimilation, however, represents a considerable challenge. 
From this perspective, Fig. 18c is particularly exciting since it reveals the remarkable level of 
detail that can potentially be mined to develop an effective hybrid 4D-Var approach for ROMS. 
The sub-mesoscale forecast problem on G3 has not been considered here but is, nonetheless 
important, and will be the subject of a future study.  
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